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SYMBOLS

Total wedge height A = A + 0,062 in
Aspect ratio

Coefficients for Busemann equation

Fin lift-curve slope

Rolling moment coefficient C1 = aa%;——

Roll forcing moment coefficient

Roll damping moment

Roll forcing derivative
Pressure coefficient

Aerodynamic force

Moment of inertia about longitudinal axis

Rolling Moment
Mach number

Local Reynolds number Re, = fl!f_

Area of fin

_ md?

Body cross-sectional area SB 7

Area on fin used to determine velocity potential

Local velocity of potential flow
Free stream velocity

Shroud Diameter
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Fin span

Fin chord
Body diameter
Wedge chord

Wedge shape parameter

Roll rate
Dynamic pressure q= 1/2/>V2
Fin semi-gpan s = 1/2b

Local velocity in x direction

Perturbation velocity in x direction

Coordinate parallel to longitudinal axis
Coordinate normal to longitudinal axis along fin
Coordinate normal to fin
Supersonic source strength
Wedge height A=htan §
Roll angle
Angle of attack

2
Compressibility factor 6 = |A4 _'”
Wedge angle
Boundary layer thickness

Fin taper ratio A =

vi
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Local air density

Fin mid-chord sweepback angle |
General chord-wise coordinate of point on fin
General span-wise coordinate of point on fin
Local air viscosity

Velocity potential

SUBSCRIPTS
Steady-stage
Roll
Root
Tip }

Wedge
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A THEORETICAL INVESTIGATION OF THE ROLLING MOTION
OF THE NIKE CAJUN AND NIKE APACHE ROCKET VEHICLES

SUMMARY 3 }\‘(’ 7}

An attempt has been made to theoretically predict the roll rate of
the second stage of the Nike Cajun and Nike Apache sounding rocket vehi-
cles. The one-degree-of-freedom roll equation was derived. General
expressions were obtained for the roll damping coefficient derivative of
a sounding rocket in both subsonic and supersonic flight. Analytic ex-
pressions for the roll forcing moment coefficient due to fin trailing-edge
wedges are presented for the subsonic and supersonic flight regimes.

These equations have been applied to the Cajun and Apache vehicles
and the results compared to wind tunnel and free-flight test results,
The roll damping coefficients are in excellent agreement with wind tunnel
results, but the roll forcing coefficients do not agree. Neither the
theoretical nor the wind tunnel forcing coefficients gave a roll history
as obtained in free-flight tests. The theoretically predicted roll his-
tory does, however, show several previously unexplained characteristics

of the free-flight roll history. C{/) : é

INTRODUCTION

The Nike Cajun and Nike Apache are two-stage, unguided sounding
rockets used by NASA for upper atmosphere and meteorological research.
The first stage of both vehicles is a solid-propellant Nike M5-El
booster. This booster burns for 3.5 seconds. The second stage is
fired 16 seconds after first stage burnout and burns four (4) seconds
for the Cajun or 6.5 seconds for the Apache., The Nike Cajun can lift
an 80 pound payload approximately 100 miles and the Nike Apache will
achieve an apogee of 150 miles with the same payload.

Except for the propellant and the nozzle, the Cajun and the Apache
vehicles are identical. As the Cajun and Apache vehicles are geometri-
cally identical, aerodynamically they can be considered to be the same
vehicle, which is usually called the Capache vehicle, This practice
will be followed hereafter when referring to the general vehicle.

The Capache vehicle has a diameter of 6.5 inches and a fin span of
25.5 inches. 1t is equipped with four (4) cruciform fins whose planform
is best described as swept-back and tapered with streamwise tips, Under
normal second stage Capache flight conditipns the leading and trailing .
edges are supersonic, The fins are mounted on a shroud having a diameter
of 7.5 inches., Figure 1 is a sketch of the Capache vehicle.



As the Nike Cajun is unguided it must be spin-stabilized to attain
good payload attitude in space, Roll is achieved in the Capache vehicle
by mounting spin tabs or wedges on the trailing edges of all four fins.
The wedges extend full span and roll rate control is obtained by changing
the values of wedge angle and wedge area. 1t is most convenient to use
wedges of a given constant chord, thereby reducing the control problem to
only one parameter, wedge height, Wedge dimensions and placement are shown
in Figure 2,

When the magnitudes of the roll rate and the pitch frequency are simi-
lar, a pitch-roll coupling occurs, This coupling usually results in pitch-
roll resonance or "roll lock-in'". Roll lock-in produces unstable flight
and, if the dynamic pressure is sufficiently high, is often catastrophic,
Calculations of typical pitch frequencies show that the theoretical rigid
body pitch frequency of the Capache vehicle is above 5 cycles per second
at second stage separation, decays to 2 cycles per second at second stage
ignition, peaks at 2.5 cycles per second just before Capache burnout, and
then decays asymptotically to zero (Figure 3).

Two methods are available for preventing pitch-roll resonance, The
first is to hold the roll rate as close to zero as possible, This method,
however, often results in poor vehicle attitude in space, In order to
obtain good attitude in space, the vehicle must be rolled. To prevent
roll lock-in the roll rate should pass through the lock-in point (where the
roll rate and pitch frequency are equal) with as high a roll acceleration
as possible, The roll rate at Capache burnout should also be at least
5 rps to prevent lock-in at that time,

DERIVATION OF THE ROLL EQUATION

The rolling motion of a rocket vehicle is described by the basic

dynamic equation
LN )
Ixx ¢ "L

The rolling moment | is the sum of three terms, the forcing moment,

the damping moment, and the induced moment, The forcing moment is a
function of control deflection (or wedge angle) § , the damping moment
is a function of roll rate @ , and the induced moment is a function of
angle of attack o and roll angle ¢ « For the purposes of this analy-
sis, the angle of attack is assumed to be zero so that there are no in-
duced rolling moments. (For roll lock-in to occur there must be induced

(1)
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rolling moments present, However, this analysis is interested in determining
the roll rate and is not designed to analyze roll lock-in other than to avoid
its occurrence.)

Under this linear theory, two rolling moment coefficient derivatives
are defined., These derivatives, the forcing derivative and the damping

derivative are defined as follows:

(a) Forcing moment coefficient:

L
- 98 [—=5
C‘gs - 86 ?dse
(2)
(b) Damping moment coefficient:
.= | wds
= d S .
L é(—2%) Cl ’ %"’O
(3)
Therefore,
_ ¢d
L—CIS 51:]58 -»L-C}2 <Zc/5
(4)

Substituting into equation (1), simplifying and changing variables gives

xxP (C 6+C2p2v ids

Wind tunnel test results give the term C: & as a function of Mach
number, The term is defined to be identical w1th C‘ for the purposes of
this analysis., That is,

(5)

§ (6)
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For a steady-state rolling motion
0 =0

if xx 18 finite., Therefore,

CI

(7)

Pss = = 2
SS CQP

(8>

Equations (5) and (8) have been programmed for solution on a digital

computer.

CALCULATION OF ROLL DAMPING COEFFICIENT

The next step of the analysis involves determination of the rolling
moment coefficients, As the Capache vehicle normally operates with the
leading edges of the fins supersonic, values of the coefficients for Mach
numbers less than 1.4 are needed only to show trends and do not require a
high degree of accuracy. Therefore, simple strip theory will be used for

the subsonic regime,

Considering a chordwise strip (Figure 4),

C:_“ \/ Q’C. C%y

(9

Substituting for the general chord in terms of taper ratio and non-

dimensionalizing gives

CL Cr ®
Gy P0-5) &

¢ ds,

(10)




which, upon integrating results in
C 3
(j - — L C% F’S </ I‘f:3A :)
2 ds, Vv /2

3
£ =4
P d 53 6 (12)
For a flat plate in incompressible flow, the lift-curve slope is 2 w.

Correcting for compressibility, sweepback, and aspect ratio (Ref. 1) the
lift-curve slope becomes

2 AR cos @
C, = -

Lo 2 cos a + \/(BA?)(2 + 4 Cosed‘j (13)

Combining equations (12) and 413) for a four finned vehicle gives

(11)

Thus,

C =- 2 e, 53(/+3/\) 7T R cos «
Y e I 2 2
P 3d SB Cos ¢+E\/(BAQ) + 4 cos (01"4)
The damping moment on a supersonic fin is given by
== S’ C_ v dy dx
LP SS P )’ /
(15)

where Cp is an unknown furction,

CP = 'F (X»Y) /DIM)VIO(> (16)



-6-

Thus,

3
C, =*}7/§;‘a_(;fj)ggscpydydf‘ -

From the linearized Bernoulli equation,
C - Z/DVuc
P 9 (18)

4y,

Cp = 7y

or simply,

(19

The perturbation velocity is most easily found by replacing the fin
with a distributed sheet of supersonic sources. The perturbation velocity
is then given by the X-derivative of the velocity potential of these sources,

That is,
op
Up = dx

(20)
Hence,
foo 4 2
PV 3x
(2D
The velocity potential of the distributed sources is (Ref, 2),
[ d§ dy
@‘%/r‘ / (x £)% - 6%(y- 2
SW )I?) (22)
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where i/ is the source strength, and S, is some region on the fin defined
by intersections between the Mach forecone of the point (§z 1) and the
edges of the fin (Figure 5). The pressure coefficient is therefore

C =22 | [ ds 97
£ T 7T I /( _' _ @ (y - n)a

C \
“w

(23)

For a rolling fin at zero angle of attack the source strength is

V (24)

Therefore,

7 dn df

4?;: 3 z
Co=7v 3 )) Joxa®-pgy-n

" (25)
Combining equation (25) with equation (17) gives ‘
/ d - 770[7] L. | dy dx
N =TT NP ax -5V -F -7 o |9
- :/vj 6
A 7 ¢ »

(S

(26)

The rather cumbersome integrations of equation (26) have been carried
out by Malvestuto et al (Ref, 3) for the case of subsonic leading edges
and by Harmon and Jeffreys (Ref. 4) for the supersonic leading edges. 1In
both cases the results have been presented as design charts, These charts
have been used here to determine the damping moment coefficients as needed.

The above method, equation (26), neglects the effects of fin-body in-
terference, This is in keeping with the standard practice of neglecting
body effects when the ratio of body redius to fin semi-span is less than
0.30. If it is desirable to include body effects, equation (24) can be
modified to

I 2a
F:—V-P— Q-'E:’,%‘:’)O?"

27)



for ’)7<q(Ref. 5).

The damping moment coefficient for the Capache as computed from equa-
tions (13) and (26) was compared with data taken in wind-tunnel tests (Ref.
6). Excellent agreement resulted (Figure 6).

CALCULATION OF ROLL FORCING COEFFICILENT

The flow field over the wedge producing the forcing moment is quite
complex, and straightforward mathematical solutions are not available as
above. The various Mach lines emanating from the leading edge root and
tip intersect in such a manner that at low Mach numbers none of the wedge
experiences two-dimensional flow, and at higher Mach numbers only a small
portion of the wedge experiences two-dimensional flow (Figure 7). According
to Evvard's linear aerofoil theory, however, these Mach lines do not affect
the two-dimensional nature of the flow at zero angle of attack, The only
portion of the wedge that would deviate from two-dimensional flow would be
in the regions behind the Mach lines emanating from the junctions of the
leading edge of the wedge with the body and the tip, These regions are
negligible when compared to the total area of the wedge.

A further complication of the flow over the wedge is due to the presence
of the boundary layer, By assuming that a local Reynolds number of 5 x 107
is sufficient to assure a turbulent boundary layer, and making the added and
rather gross assumption that the Inconel cap on the leading edge of the fin
acts as a trip, the general statement can be made that the boundary layer in
the vicinity of the wedge is of a fully developed turbulent nature,

For the purpose of boundary layer calculations, a 1/5 power velocity
distribution was assumed for the turbulent boundary layer:

U z\s

v oLl
For this velocity distribution the boundary layer thickness is (Ref. 7)

L

/ -7
—g—- - 0.1285 (/\Dex)

(28)

(29)
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A boundary layer thickness history was prepared for a typical Apache
trajectory using the boundary layer thickness at the tip of the trailing
edge, This point is the point of minimum boundary layer thickness on the
wedge. From this history (Figure 8) it was determined that, even at mini-
mum boundary layer thickness, the boundary layer thickness is greater than
wedge height.

Another point to be considered is boundary layer separation in the
compression corner formed by the intersection of the wedge with the fin,
This separation and the subsequent reattachment produce an additional
shock wave., An oblique shock is formed at the separation point and an-
other oblique shock is formed at the reattachment point. This deviates
from the ideal flow case of one oblique shock extending from the corner.
Kuehn (Ref, 8) has measured the pressure distributions produced by sepa-
ration of turbulent boundary layers in such corners, By numerically
integrating the measured pressure distribution to obtain the resultant
force per unit width, it has been determined that viscous effects in general
reduced the resultant force acting by 5% from the ideal value, regardless of
whether separation occurs in the corner. Thus, boundary layer effects will
be generally ignored in computing forcing moments.

The aerodynamic force on the wedge is given by

CI’ES -__-_Cpcz dydx

(30)

and the rolling moment is

LS:S;hS: Cpclydycfx
(31)

For incompressible flow,

(32)



by Bernoulli's equation.

U

where

Thus,

C

F?

for incompressible flow.
ble subsonic flow gives

C,=

-10-

From potential flow theory (Ref. 9),

=\

1
3

i
o

(33)

(34)

(35)

Applying the Prandtl-Glauert rule for compressi-

, __éﬁ—
_6_(/_)('”-5

Substituting into equation (31) gives

HS‘S
o) Q

and hence

2

28

_g_(/_x—i:_{)y c/)' dx

7+8
-6

2 7 -§

S -a

e h e
CI 6/56&3; m+48

(36)

37)

(38)
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as the forcing moment coefficient for subsonic flow,

The pressure coefficient for supersonic flow is in general given by
Busemann's oblique shock equation for two-dimensional flow:

2 3
C,=Cé6+C58 +(GE+
(39

Two approximations to the Bugemann equation are in use. The linear form
is the well-known Ackeret equation

c
Cp=?5

and a third-order form due to Bonney (Ref. 10) is

Cp =C &+ Caga+(C3-D)€3

(40)

(41)

Both approximations were used with equation (31) to generate forcing
moment coefficients, It was found that the linear form gave a better
agreement with the wind tunnel data, Substituting equation (40) into
equation (31) and integrating gives

Y, 2_2
G 7 8ds, (5=

(42)

c h(sé-&)
e BdS,

(43)
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The forcing moment generated by equations (38) and (43) is plotted in
Figure 9, along with wind tunnel data for a representative value of § .
Agreement between theoretical and wind tunnel data is not good. .

RESULTS

Both theoretical and wind tunnel forcing moment coefficients were used
to predict the roll histories of several Capache flights, Neither set of
coefficients produced a roll history which agreed with the measured flight
roll rate (Figure 10). At some portions of the flight the predicted valces
were as much as 60% in error compared to the flight measured values, All
attempts to correlate the differences between predicted roll rates and
measured flight values with flight parameters have failed,

Several effects are probably responsible for these discrepancies,
There is evidence that aeroelastic and jet plumage effects have a strong
effect on the flight roll rate. Also the effect of the boundary layer on
the roll rate cannot be discounted, Boundary layer was ignored in the
theoretical calculations carried out here, The Reynolds number in the
wind tunnel tests was much lower than the flight Reynolds numbers. Thus,
in the wind tunnel tests, the boundary layer build-up was not representative
of flight cases,

CONCLUSIONS

1. Although the equations derived here do not give a highly accurate
description of the roll history of the Nike Capache vehicle in flight,
they are a definite improvement on the equations used by Cooper and
Mamone (Ref, 11) and by Jenkins (Ref, 12).

2. The equations, as derived here, while not accurate enough for a roll
lock-in study, do give sufficiently accurate roll rate predictions for
general use in planning the payload requirements for the experiment and
the telemetry.
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Figure 4- Strip Theory On Fins
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M=1.75

Figure 7a-= Mach Lines for Flow Over Fin
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M=6.0

Figure 7b- Mach Lines for Flow Over Fin
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